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1. Introduction

We are concerned with detecting a change in the underlying condition of a process,

when the available observations are related only probabilistically to this condition. This

situation has long been of concern to statisticians, engineers, economists, epidemiologists,

etc. In this paper we address the specific context of monitoring a discrete-part production

machine, with the objective of effectively determining when to shut the machine down for

maintenance or replacement. Applications to other areas such as quality control, health,

military surveillance, or economic analysis should be readily apparent.

Before presenting any details, we list some definitions and initial assumptions, in order

to clarify the general setting that governs our analysis:

a) There is an underlying time interval that characterizes the operation of the machine,

most often the “part production cycle time”. All times and intervals are subsequently mea-

sured in units of this time interval.

b) The machine can be in only one of two conditions: “good” or “bad” (denoted G and

B, respectively). By the G condition we mean the machine can operate in such a way that

it is “in control” or “normal” or otherwise able to produce acceptably; by the B condition

we mean it is “out of control”, “failed” or only able to produce bad parts (scrap).

c) The machine starts in G but at some random variable operating time T (called the

failure time) goes to B. This is called a “failure event”, or more simply, a “failure”.

d) Observations of “signals” which are probabilistically related to the machine’s condition

are made at fixed, pre-determined times.

e) Immediately following any observation one of two possible actions can be made: “do

nothing” or “take an action consistent with believing the machine is in B”. The latter

investigative action is called a check.

f) When a check is made, production is stopped and the condition of the machine becomes

known with certainty. A check that finds the machine in G, called a false alarm, returns the

machine to operation (in G) after an interval of length g. A check that finds the machine

in B, called a true alarm, re-sets it to “as-new” condition – or, equivalently, replaces it by

a new (identical) machine – after an interval of length b. This event is called a renewal.

Typically g < b since renewal often requires fixing or replacing something, while checking

when the machine is in G may only require a brief inspection to ascertain that it is in fact

in G.

g) The process (observations, failures, checking, etc.), which we call “monitoring”, con-
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tinues indefinitely, with successive failure times assumed to be independent and identically

distributed (I.I.D.).

All of these assumptions, of course, must be eventually replaced or relaxed to conform

to the realities of any actual processes. On the other hand, important underlying relations

among performance measures, and their dependence upon machine parameters and checking

strategies, will become evident using this set of simplifying assumptions.

Our fundamental problem, then, is to determine a policy, i.e. when to check, knowing

the complete history of the process, including its age, the elapsed time since the last check

and the values of all observations made to date. There are two competing concerns that

underly the determination of an effective policy: checking soon enough so that the machine

does not operate too long in condition B, while not checking so often that the machine is

shut down unnecessarily. In other words, an advantage is gained when a policy raises an

alarm that detects the occurrence of B soon after it happens. However, it is also desirable

to avoid costly false alarms that result in shutting the machine down to check it when it is

still in condition G.

Trading off (or constraining) the costs of delayed failure detection and false alarms is

the basis of most quality control and control chart procedures developed over the past sixty

years [see Shewhart (1931), Duncan (1956), Roberts (1966), Johnson and Leone (1962),

Montgomery (1980) and Lorenzen and Vance (1986), for a historical perspective, and Bas-

seville and Nikoforov (1993) for a contemporary and extensive comparison and evaluation of

a variety of methods]. The most common approaches to “optimizing” these procedures [e.g.

Moskowitz, Plante and Chun (1989), Saniga (1989)] use economic models that explicitly in-

corporate costs ascribable to false alarms and delayed checking. Such trade-off analyses and

economic approaches depend upon specific policy structures that, although they have intu-

itive appeal and lead to easy computation or evocative charting methods, can be inefficient

or arbitrary in nature.

More important, such methods (indeed, most statistical process control approaches) often

essentially ignore what is known about the machine’s failure time distribution. In contrast,

we explicitly make use of this distribution to present and evaluate a checking policy that is

“optimal” according to a broad set of criteria. Our approach is based on earlier work by

Shiryaev (1978), Pollak and Siegmund (1975), Pollak (1985) and others. It is also motivated

by a natural inclination to develop checking policies that become, in appropriate limits, those

that have been shown in the literature to be optimal for well-studied situations where either
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no observations or perfect observations are made. The former has been long analysed under

the rubric of “optimal maintenance policies” [see, for example, the seminal work of Barlow

et al. (1963)]; the latter has been the subject of “optimal replacement policies” [see, for

an early example, Page (1954)]. These two special cases “bracket” the capabilities of any

realizable system that involves information gathering.

2. Performance Measures

The use of any checking policy ultimately results in performance measures of interest to

decision makers. Before one can find effective checking policies, then, it is important to define

these measures and understand the relations among them. We choose to list these measures

in three general categories, along with parameters and variables used in our analysis.

Type One (False Alarm) Measures.

False alarms are costly since resources are used to process each alarm, and production

time is often lost as well. Measures that account for these include:

rf ≡ false alarm rate ≡ the expected number of false alarms per unit time,

pf ≡ fraction of total time spent processing false alarms,

µ ≡ expected number of false alarms until failure,

ARL0 ≡ the expected machine operating time until a check, given the machine starts and

remains in G

Type Two (Late Detection) Measures.

Being slow to stop a machine that is in B leads to the production of bad parts or to lost

production. Relevant measures include:

D ≡ (random variable) time between failure and the next check,

δ ≡ expected detection time ≡ E(D), also called EDD – “expected delay in detection” – see

Marcellus (1993),

rt ≡ true alarm rate ≡ the expected number of true alarms per unit time,

pt ≡ fraction of total time spent processing true alarms,
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ARL1 ≡ the expected machine operating time until a check, given the machine starts and

remains in B

We note here that, in spite of their popularity in the literature (and in practice), we avoid

the use of the average run length measures ARL0 and ARL1 for two reasons:

a) the hypothetical situation (required for computing ARL0) where the machine is “forced”

to remain in G until the occurence of the first alarm is hard to justify. Its interpretation

is particularly unclear if a policy allows the machine to fail before the first alarm;

b) ARL1 is defined only for the situation where the machine starts and remains in condi-

tion B – a situation that is rarely realized in practice.

These shortcomings have been pointed out before by Woodall (1985,1986), Svoboda

(1991) and others.

Composite Measures.

Other performance measures of operational interest can be expressed as simple functions

of Type One and Type Two measures. (In the following definitions, the term total time

means operating time plus checking time):

pS ≡ fraction of total time the machine is in B and producing scrap,

pB ≡ fraction of total time the machine is in B (either producing scrap or being replaced),

pG ≡ fraction of total time the machine is in G (i.e. producing usable parts),

r ≡ total alarm rate ≡ the expected number of alarms of any type per unit time,

p0 ≡ fraction of total time spent processing alarms of any type.

One can combine performance measures to obtain the overall cost per unit time. Com-

puting this cost rate, however, using the simplest linear model, requires the following cost

coefficients:

Kf = fixed cost per false alarm,

Vf = cost per unit time spent processing a false alarm, including lost production,

Kt = fixed cost per true alarm,
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Vt = cost per unit time spent when processing a true alarm (i.e. when the machine is

stopped and found to be in B), including lost production, and

Vd = cost per unit time of producing scrap while in condition B, including lost production.

The resulting total cost per unit time, cT , can then be expressed as:

cT = Kfrf + Vfpf + Ktrt + Vtbrt + VdpS. (1)

Computing cT requires knowing all these cost coefficients (minimizing cT requires knowing

at least their ratios), which in many cases are difficult (if not impossible) to obtain. For

this reason, and because the method we propose to use can be implemented without the

availability of these cost coefficients, we do not directly pursue cost-minimization. Our

approach concentrates, instead, on computing non-cost performance measures and using

these to choose among various checking policies. If cost coefficients are available, however,

the form of the policy we produce can be readily manipulated numerically to produce a

decision rule that minimizes cT .

3. System Operating Characteristics

We are ultimately concerned with providing decision makers with checking policies that:

a) are easy to understand and implement;

b) readily allow input of, and sensitivity analysis with respect to, important parameters,

including the expected value of the failure time, and the discriminatory capabilities of

various sensors; and

c) do not require an explicit assessment of the hard-to-estimate cost coefficients in equa-

tion (1).

The means by which we present the consequences of using any particular monitoring

policy is the System Operating Curve or System Operating Characteristic (SOC) [see Pollock

(1965) and Rapoport et al. (1973) for early development]. The SOC is a simple graphical

plot involving two axes – one showing a Type One measure, the other a Type Two (or

composite) measure. A single point on the SOC represents a pair of performance measures

attainable by using a particular checking policy with a machine characterized by specified
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parameter values. A family of such points represents the range of output measures attainable

by changing one or more policy variables available to the decision maker.

For example, a SOC could be a plot of pS (the fraction of time the machine is producing

scrap) versus p0 (the fraction of time spent checking alarms of any type). Consider a set of

such SOC’s, as shown in Figure 1, one for each of three different hypothetical monitoring

situations A, B and C on the same machine. Each curve represents the set of operating

points (i.e., values of pS and p0) achievable by using different values of a particular policy

variable.

Figure 1: System Operating Characteristics (SOC) for three hypothetical situa-
tions A, B and C.

Assuming that the costs of implementing A, B and C are all the same, situation C is

clearly better than A or B, since it has either a lower pS for any given p0, or it has a lower

p0 for any given pS. (Perhaps C allows the monitoring of signals that are not available to

either A or B). If forced to chose between A or B, however, A would be preferred to B

when the advantage of achieving early detection (i.e. small pS) is more important than the

disadvantage of spending a large fraction of time checking alarms.

The SOC is similiar to the Receiver Operating Characteristic (ROC) used in telecommu-
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Figure 2: A single cycle with n checks (n− 1 of which are false alarms). Vertical
arrows indicate checking actions and renewals; T = operating time until
failure which occurs at time T +(n−1)g; D = detection time; ti = time
of ith check (a false alarm for i < n); tn = time condition B is detected;
and tn + b is the time the machine re-enters condition G (which ends
the cycle).

nication and signal detection theory, and is also clearly related to the power curve oroperating

characteristic of fixed-sample or sequential hypothesis testing. The word system is used to

emphasize the fact that it is a combination of the machine, the monitoring device and a

checking policy that is being represented. Note that, given appropriate cost coefficients,

equation (1) can be used to produce values of cT for any point on the SOC curve.

4. Relationships Among Performance Measures

We now present general relations among the performance measures that exist for any

reasonable checking/monitoring procedure. To obtain these, we define a cycle to be the time

between renewals. Figure 2 shows a cycle that contains n checks at times t1, t2, · · · , tn. There

are n−1 checks that find the machine in G (i.e., there are n−1 false alarms), each requiring

time g. The last check in the cycle finds the machine in B and takes time b. Since the

machine is stopped during checks of any type, in any cycle the operating time until failure,

T , differs from the total time until failure which equals T plus the time spent checking (while

in G) prior to failure.

From Figure 2 we see that L, the expected cycle length when there are n checks (hence
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n− 1 false alarms), is

L = E(T ) + g(n− 1) + E(D) + b. (2)

Since µ is the expected number of false alarms until failure and δ ≡ E(D), the overall

expected cycle length is

L = E(T ) + gµ + δ + b. (3)

An elementary use of the fundamental renewal theorem gives

rf =
µ

E(T ) + gµ + δ + b
(4)

and

rt =
1

E(T ) + gµ + δ + b
. (5)

The ratio of these two equations gives

µ =
rf

rt

. (6)

Solving for δ in equation (5) gives

δ =
1

rt

− E(T )− gµ− b =
1

rt

− E(T )− g(
rf

rt

)− b. (7)

The expected time the machine spends in B is δ + b. Since true alarms occur at a rate rt,

pB = (δ + b)rt, (8)

The times to process a false alarm and a true alarm are g and b, respectively. Since these

occur at rates rf and rt

pf = grf (9)

and

pt = brt. (10)

Finally, by definition,

r = rf + rt (11)

p0 = pt + pf . (12)

pS = pB − pt (13)

pG + pS + pf + pt + p0 = pG + pS + 2p0 = 1 (14)
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Relations (2) through (14) hold for any checking procedure. Thus, having computed any

pair of Type One and Type Two measures (such as rt and rf ) and knowing E(T ), b, and g,

allows the calculation of δ, pB, pG, pt and pf , etc.

For expositional simplicity, in the remainder of this paper we set the lengths of time

needed to perform checks to unity, i.e. b = g = 1. Converting computations for arbitrary b

and g values (even when they are zero) is straightforward, as shown in Appendix C.

5. The Basic Monitoring Process

We now present additional assumptions and notation used to define the monitoring

process, determine an optimal checking policy, and to compute performance measures that

result from its use. Let:

W (t) ≡ the cumulative distribution for the failure time T = prob.{T ≤ t}.

i = observation number, i = 1, 2, ...

τi = time at which the ith observation is made.

Since observations (and therefore checking opportunities) are limited to the times τi, it

is useful to define the function f(i), the probability that failure occurs between the (i− 1)st

and ith observation, so that

f(i) ≡ W (τi)−W (τi−1), i = 1, 2, 3, . . . , (15)

where τ0 ≡ 0 (even though no observation is actually made at time 0).

Let Ct ≡ condition of the machine at time t. The observation made at time τi is the

random variable Xi, having a p.d.f. fXi
(·), depending upon the machine condition as follows:

fXi
(x) =

 p(x); if Cτi
= G, i = 1, 2, . . . ,

q(x); if Cτi
= B, i = 1, 2, . . .

(16)

The random vector Xn of observations is defined as

Xn ≡ (X1, X2, . . . , Xn),

and its realization xn is

xn ≡ (x1, x2, . . . , xn).

9



Any checking policy can be viewed as being a decision rule to determine whether or not

to check the machine at time τn given the set of observations xn. For example:

a) using the ordinary Shewhart chart (see, e.g. Montgomery [1996]), the decision is based

upon only the last observation xn: if this value falls outside pre-determined control

limits then a check (i.e. a “search for an assignable cause”) is made. The chart’s

control limits are policy variables, and varying them will produce an associated SOC.

b) using Shewhart charts with supplementary runs tests, if K out of the last N observa-

tions fall within a pre-specified zone, then a check is made. Here, K and N and the

control limits are policy variables that, when varied, will produce the associated SOC.

SOCs resulting from the use of these charts are shown and compared in Lele (1995). Other

policies, e.g. CUSUM or EWMA charts, make use of various functions of some (or all) of

the observations xn [see Basseville and Nikoforov (1993)] . It is important to note, however,

that most of these policies are, in some sense, ad-hoc. In contrast, we now introduce a class

of policies based upon certain optimality conditions.

6. The Probability Threshold Rule (PTR)

A particularly attractive form of checking policy can be based upon a simple proposition:

since the observations at times τ1 through τn provide information about machine condition,

this information can be used to “update” the probability that Cτn = B. Specifically, the

probability

Pn(xn) ≡ prob.{Cn = B|C0 = G, X1 = x1, X2 = x2, . . . , Xn = xn},

can be used as the fundamental element in the definition of the Probability Threshold Rule (PTR):

Check when Pn(xn) first equals or exceeds some threshold probability p∗.

If W (t) is geometric, it is well known (e.g., see Girshick and Rubin [1952 ], Shiryaev

[1963], or Pollock [1965] for early references, or Pollak [1987] for a more recent one) that the

PTR is “optimal” since a threshold-type policy variable p∗ exists that minimizes either:

a) the expected detection time δ for a given value of false alarm rate rf ; or

b) the false alarm rate rf for a given value of expected detection time δ; or

c) the cost per unit time, cT , given by equation (1)
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From an operational point of view this means that, given a particular value of p∗, a

decision maker can achieve the associated performance level shown as a point on a SOC.

Or, equivalently, from an analysis or strategic point of view, given the ability to efficiently

compute Pn(xn) the decision maker can vary values of p∗ to explore trade-offs among var-

ious performance measures. For example, if curve C of Figure 1 represents a typical SOC

associated with using a PTR policy: large pS and small p0 are produced when p∗ → 1, and

small pS and large p0 are produced when p∗ → 0.

Note that the PTR has only one “free” parameter, p∗.

7. Computing Pn(xn)

The computation of Pn(xn) follows from the definition of conditional probability:

Pn(xn) ≡ prob.{T ≤ τn| Xn = xn}

=
prob.{T ≤ τn ∩Xn = xn}

prob.{Xn = xn}
(17)

where

prob.{T ≤ τn ∩Xn = xn} =
n∑

j=1

f(j)Πj−1
i=1p(xi)Π

n
k=jq(xk) (18)

and

prob.{Xn = xn} = prob{T ≤ τn ∩Xn = xn}+
∞∑

j=n+1

f(j)Πn
i=1p(xi). (19)

Substituting (18) and (19) into (17), and dividing the numerator and denominator by

Πn
i=1p(xi), gives

Pn(xn) =

n∑
j=1

f(j)Πn
k=jL(xk)

n∑
j=1

f(j)Πn
k=jL(xk) + F (n)

(20)

where

L(xi) ≡ q(xi)/p(xi) (21)

is the likelihood ratio for condition B given Xi = xi, and

F (n) ≡
∞∑

i=n+1

f(i) = prob{T > τn}.
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Although computing Pn(xn) directly from equation (20) is straightforward, it is compu-

tationally advantageous, instead, to use the “odds in favor of condition B” (also called the

odds ratio)

Rn(xn) ≡ Pn(xn)/(1− Pn(xn)). (22)

(For notational convenience, the argument xn is suppressed for the remainder of this paper,

e.g., Rn(xn) is written as Rn.) This odds ratio can be obtained directly from equation (20)

as

Rn = [F (n)]−1
n∑

j=1

f(j)Πn
k=jL(xk). (23)

This allows a recursive representation for Rn:

Rn =
L(xn)

F (n)
[F (n− 1)Rn−1 + f(n)], (24)

which can be confirmed by substitution into equation (23). Equation (24) is an excellent

way to compute Rn, and thus Pn = Rn/(1 + Rn), since Rn is calculated from the previously

obtained Rn−1 and each new observation xn by means of a simple addition and multiplication.

Equation (24) clarifies the challenge of computing performance measures associated with

the PTR. In particular, consider computing the point in time when Pn first equals or exceeds

p∗ (at which time the PTR produces a check). This is the equivalent of finding the smallest

value of n such that Rn equals or exceeds the “odds threshold”

ρ∗ ≡ p∗/(1− p∗). (25)

When xn+1 is replaced by the random variable Xn+1, we see that equation (24) can

be viewed as the generator of a Markov Process Rn. This process has as a state space

the non-negative real line IR+, with transitions at observation times τn governed by the

stochastic behavior of Xn, which in turn are governed by the p.d.f.s of equation (16). When

an observation of Xn+1 = xn+1 is made, either

(a) Rn+1 < ρ∗, and the process continues; or

(b) Rn+1 ≥ ρ∗, and a check is made.

8. Performance Measures for Two Limiting Cases:

In this section we “bracket” performance of the PTR for any realizable monitoring system
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by computing performance measures for the limiting worst-case and best-case extremes of

monitoring.

No Observations: As a “worst case” bound on the SOC, we can consider the limiting

situation where observations provide no information, which is equivalent to having p(xi) =

q(xi), so that L(xi) = 1, for i = 1, 2 . . .. In this case, equation (24) reduces to

Rn = [F (n)]−1[F (n− 1)Rn−1 + f(n)], (26)

with solution (given boundary condition R0 = 0):

Rn =
F (n)

F (n)
. (27)

From the definition of Rn in equation (22), this gives

Pn = F (n), (28)

a result that holds for any F (n). Clearly, observations of xn have no effect on Pn, which is

simply the cumulative distribution for the failure time T evaluated at T = τn.

Two performance measures that can be readily calculated are µ and δ. By definition of

the PTR, the (deterministic) time to first check, t1, is the smallest monitoring time such

that the threshold probability is exceeded, i.e.

t1 = min
t∈{τi}

{t : W (t) ≥ p∗}. (29)

Similarly, the time of the jth check, tj, can be shown to be

tj = min
t∈{τi}

{t :
W (t)−W (tj−1)

1−W (tj−1)
≥ p∗; t > τj−1} (30)

where t0 = 0.

The computation of µ and δ becomes straightforward if we assume that the inequalities

of expressions (29) and (30) are satisfied as equalities. This situation holds if the checking

times tj are not constrained to be in the set {τj} – a reasonable assumption if the monitoring

provides no information. In this case, the tj are easily shown to satisfy

W (tj) = 1− (1− p∗)j. (31)
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The probability that the failure time T is between the (j − 1)st and the jth check, i.e.

that {tj−1 < T ≤ tj}, is W (tj)−W (tj−1). Since all previous checks will have produced false

alarms, we have

µ =
∞∑

j=1

(j − 1)[W (tj)−W (tj−1)] = 1/p∗ − 1 (32)

The time late, given tj−1 < T ≤ tj is tj−T , so by equation (31) and simple decomposition

of expectations, the expected time late E(D) ≡ δ is

δ =
∞∑

j=1

∫ tj

t=tj−1

(tj − t)dW (t) = p∗
∞∑

j=1

(1− p∗)j−1W−1[1− (1− p∗)j]− E(T ). (33)

This result is equivalent to similar ones contained in the literature, and has served as the

basis for cost-minimizing checking policies over the past thirty years, starting with Barlow

and Proschan [1965].

Perfect Monitoring: The limiting case of “perfect” information represents another special

situation. In this case the supports of p(xi) and q(xi) are disjoint: L(xi) = 0 for all i such

that τi < T ; and L(xi) = ∞ for all i such that τi ≥ T . From equation (20), we see that any

non-zero threshold less than one is exceeded at time τn if and only if n is such that τn ≥ T .

In this case

δ = ET [ min
t∈{τi}

{t− T : t ≥ T}], (34)

and the machine is checked only when it fails. From this, it is trivial to show that the true

alarm rate is rt = 1/(E(T ) + b + δ), the false alarm rate is rf = 0, the fraction of time spent

processing true alarms is pt = b/(E(T ) + b + δ) and the fraction of time processing false

alarms is pf = 0.

9. Behavior of Rn for Geometric Failure Time Using the PTR

Unfortunately, computation of performance measures for the PTR is extremely difficult

for general failure time distributions W (t). (For a recent example dealing with a uniform

distribution, see Wang [1995] ). However, suppose the failure time T is geometrically dis-

tributed with expected value E(T ) = 1/η. Then the cumulative distribution is

W (t) = 1− (1− η)t, t = 1, 2, 3 . . . . (35)

Furthermore, assume that observations are made at times τ1 = τ, τ2 = 2τ, τ3 = 3τ, . . ..

(This equal-interval assumption is consistent with monitoring practice. The determination
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of the optimal value of such checking intervals has been well studied when no monitoring is

possible (see, for example, Kaio and Osaki (1989) for a comparison of methods). However,

when monitoring is possible the selection of optimal checking times is still an open research

question.) The associated probability that a failure will occur between observation i and

(i− 1) is readily shown to be

f(i) = a(1− a)i−1, i = 1, 2, 3, . . . , (36)

with cumulative distribution

F (i) = 1− (1− a)i, i = 1, 2, 3 . . . , (37)

where

a ≡ 1− (1− η)τ . (38)

Using this distribution, equation (24) reduces to:

Rn = `(Xn)[Rn−1 + a], (39)

where

`(X) ≡ L(X)/(1− a). (40)

In this case the conditions for checking and continuing, respectively, using equation (39),

are:

a) if `(xn+1) < ρ∗/(Rn + a), continue; and

b) if `(xn+1) ≥ ρ∗/(Rn + a), check.

The absorption behavior of the process represented by equation (39), and in particular

the distribution of the (random variable) time N until RN first equals or exceeds the odds

threshold ρ∗, has a long and important history of study[(see Shiryaev (1978)], resulting in

computational (as contrasted to structural) methods for limiting cases or approximations

[e.g., Pollak (1985) and Pollak and Siegmund (1975)]. In the sections that follow, we present

a Markov Chain approximation that extends these results, and provides an efficient method

for computing performance measures of interest.

10. Markov Process Representation for Geometric Failure Time

All performance measures of Section 4 can be obtained by computing the steady state
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probabilities of a mixed continuous-discrete state Markov Process we shall call MPR, created

by combining Rn with the machine condition Cn. MPR is defined such that: transitions occur

immediately after observations and any associated checking; the state at the end of the nth

transition is denoted as Sn ∈ S, n = 1, 2, . . .; and the state space S is the union of five

disjoint sub-spaces – three “singleton” sets (i.e. each containing a single state) and two

containing elements in the crossproduct of the open interval (0, ρ∗) and {G, B}.
These five sub-spaces of S are (see the schematic representation in Figure A1):

SG ≡ {(R,G) : R ∈ (0, ρ∗)}, set of states for which 0 < Rn < ρ∗ and Cn = G;

SB ≡ {(R,B) : R ∈ (0, ρ∗)}, set of states for which 0 < Rn < ρ∗ and Cn = B;

S0 ≡ 0, renewal state: the state entered after the machine is renewed, i.e., when Rn = 0

(or, equivalently, Pn = 0) and Cn = G;

S∗G ≡ {(ρ∗, G)}, false alarm state: the state entered after checking while the machine is in

G, i.e., when Rn ≥ ρ∗ and Cn = G;

S∗B ≡ {(ρ∗, B)}, true alarm state: the state entered after checking while the machine is in

B, i.e., when Rn ≥ ρ∗ and Cn = B.

With the distributions of the random variable Xn given by equation (16) and the geomet-

ric failure time distribution of equation (36), the transition probabilities among the states

in these sets are governed by the evolution of Rn described by equation (39). The key to

establishing the Markovian properties of MPR is that the probability the machine goes from

G to B at each transition is the constant a (except from S∗G where this probability is zero).

We note some of the properties of MPR and define associated probabilities:

a) MPR ergodic, since there is a single closed communicating class of states;

b) the probability of transition from S∗G or S∗B to S0 is 1, reflecting the one transition

(since b = g = 1) needed to check after a false alarm or a true alarm;

c) due to the geometric failure time distribution of equation (36), the single-step transition

probability is a for transitions:

i) from the set SG to the set SB ∪ S∗B;
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ii) from the state S0 to the set SB ∪ S∗B.

d) the state occupancy probabilities are defined to be:

i) π0,n = prob.{Sn = S0}

ii) π∗G,n = prob.{Sn = S∗G}

iii) π∗B,n = prob.{Sn = S∗B}

e) the steady-state probabilities for the singleton states are

π0 ≡ lim
n→∞

π0,n

π∗G ≡ lim
n→∞

π∗G,n

π∗B ≡ lim
n→∞

π∗B,n.

f) the cumulative distribution functions for the elements of the sets SG and SB are

FG,n(r) = prob.{Sn ∈ [(s, G) : 0 < s ≤ r < ρ∗]},
FB,n(r) = prob.{Sn ∈ [(s, B) : 0 < s ≤ r < ρ∗]}.

g) the steady state cumulative distribution functions for the elements of the sets SG and

SB are

FG(r) = lim
n→∞

FG,n(r),

FB(r) = lim
n→∞

FB,n(r).

Performance measures are easily obtained from these steady state probabilities and dis-

tributions. In particular, by appealing to the ergodic theorem for Markov Processes, we

know that

pf = π∗G = expected fraction of time the process is in the false alarm state;

pt = π∗B = expected fraction of time the process is in the true alarm state;

p0 = π0 = fraction of time the process is in the renewal state = pt + pf by equation (12).
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Given these values for pf and pt, the analysis in Section 4 and Appendix C shows how to

compute other measures of interest.

The equations needed to calculate π∗B and π∗G, given in Appendix A, are special cases of the

Fredholm equation of the second kind, which has a long history of theoretical study (e.g.,

Groetsch (1984) or Brunner (1982)) and numerical means of solution (Schippers (1983)).

Indeed these equations have an analogue to those developed by Pollak [1987] to compute an

ARL0-type measure. However, as Pollak notes, a general solution method is lacking for even

the simplest forms of monitoring distributions p(x) and q(x).

11. Markov Chain Approximation

We now present an approximation useful for finding performance measures by showing

that the process MPR, which has continuous elements in its state space, can be approximated

by a Markov chain (“MCR”) with a discrete state space.

To construct MCR, we identify values of the odds ratio Rn that lie in the interval (0, ρ∗),

but are restricted to the finite set

S1 ≡ {r1, r2, . . . rm−1}.

The key to this restriction is finding a set of ri values that “covers” the interval (0, ρ∗) in

such a way that the sums over probabilities over ri ∈ S1 well approximate the integrals

over S implicit in equations (A4) and (A5). (Obtaining such a set of r-values is shown, for

example, in Section 12 for Bernoulli monitoring.)

Assuming that the elements of S1 are available, we define a finite discrete state space R
for MCR

R = S0 ∪ S∗G ∪ S∗B ∪RG ∪RB.

The first three sub-spaces are the singletons previously defined in Section 10 (corresponding

to renewal, false alarm and true alarm states, respectively), and the last two are

RG ≡ {ri : ri ∈ S1, Cn = G, i = 1, 2, . . . m− 1, n = 1, 2, . . .}
RB ≡ {ri : ri ∈ S1, Cn = B, i = 1, 2, . . . m− 1, n = 1, 2, . . .}.

Thus RG represents a discrete subset of Rn values while the machine is in G, and RB

represents a discrete subset of Rn values when the machine is in B.

A simple arbitrary numbering of states allows us to represent MCR as a (2m + 1)-state

ergodic Markov Chain, which we will refer to as “MC,” with
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• σn ≡ the state of MC after the nth transition;

• state space I2m+1 ≡ {0, 1, 2, . . . , 2m}; and

• transition matrix P with elements [P ]ij = pij ≡ prob.{σn = j|σn−1 = i}
for i, j ∈ I2m+1, n = 1, 2, . . ..

Details of the relation between MCR and MC, and finding the values of pij, are contained

in Appendix B.

Given P , and defining

πi ≡ lim
n→∞

prob.{σn = i}, i = 0, 1, . . . 2m,

the steady-state probability vector π ≡ {π0, π1, π2, . . . , π2m} can be obtained by solving the

set of linear equations:

π = πP (41)

π1 = 1 (42)

where 1 ≡ {1 1 1 . . . 1}t is the transpose of the unit (2m + 1)-vector.

Performance measures can be immediately obtained from these equations since π0 is

immediately given, and π∗G = πm and π∗B = π2m. The next sections show specific results for

two examples: monitoring Bernoulli and Normal observations.

12. Markov Chain MCR for Bernoulli Observations and Geometric Failure Time

This section deals the “discretization” of MPR by MC for the special case of Bernoulli

observations, i.e. the observations are Xn ∈ {0, 1}, n = 1, 2, . . . , and

p(x) =

 1− α if x = 0,

α if x = 1,

q(x) =

 β if x = 0,

1− β if x = 1.

This situation (which can be viewed as “attributes testing”) is a form of classical hypothesis

testing: x = 0 is “evidence” of condition G (e.g., no defect in an observed manufactured

product) and x = 1 is evidence of condition B (e.g., a defect is observed). Thus α is analogous

to an “error of the first kind,” and β to an “error of the second kind.”
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The likelihood ratio is

L(x) =

 β/(1− α) if x = 0,

(1− β)/α if x = 1.

By defining

w0 ≡ β

(1− α)(1− a)
,

w1 ≡ 1− β

α(1− a)
,

equation (39) can be written

Rn =

 w0(Rn−1 + a) if Xn = 0,

w1(Rn−1 + a) if Xn = 1.
(43)

To identify a useful set S1 we consider the evolution of the Rn process of equation (43)

when the process starts with R0 = 0 (i.e., P0 = 0). The possible values of Rn that can be

generated after the first three observations, assuming none exceed ρ∗, are given in Table 1:

Observation Number n Possible Rn Values

1 aw0

aw1

2 a(1 + w0)w0

a(1 + w0)w1

a(1 + w1)w0

a(1 + w1)w1

3 a(1 + (1 + w0)w0)w0

a(1 + (1 + w0)w0)w1

a(1 + (1 + w0)w1)w0

a(1 + (1 + w0)w1)w1

a(1 + (1 + w1)w0)w0

a(1 + (1 + w1)w0)w1

a(1 + (1 + w1)w1)w0

a(1 + (1 + w1)w1)w1

Table 1: Possible values of Rn after n = 1, 2, 3 observations.
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After h observations the maximum number of possible distinct values of Rn that could

be generated is clearly 2h+1 − 2. However, an important effect reduces this number, which

allows a practical means of discretizing MCR to MC: as h becomes large, some values of Rh

satisfy Rh ≥ ρ∗, in which case either state S∗G or S∗B occurs and Rh+1 becomes 0.

Thus we can generate S1 ≡ {r1, r2, . . . , rm−1} by simply computing all possible Rn-values

achievable over a “horizon” of h observations of Xn, n = 1, 2, . . . , h. The advantages of this

approach are:

a) only feasible values of ri are generated,

b) it actually represents the Rn process for n = 1, 2, . . . , h over the horizon h, and

c) the accuracy of the discrete approximation can be improved by increasing h.

An algorithm for generating m and S1 is:

1. Set S0 = {0}, a horizon h ≥ 1 and n = 1.

2. Generate the set s0 = {w0(ri + a) for all ri ∈ Sn−1 such that w0(ri + a) < ρ∗}.

3. Generate the set s1 = {w1(ri + a) for all ri ∈ Sn−1 such that w1(ri + a) < ρ∗}.

4. Set Sn = {r : r ∈ s0 ∪ s1 and r 6∈ ∪n−1
i=0 Si}.

5. Increment n by 1.

6. If n < h then go to step 2.

7. Set S1 = ∪n
i=1Si, m = |S1|+ 1 and stop.

At termination S1 will be a set of m−1 distinct r-values which, when sorted by increasing

value, can be labeled r1, r2, . . . , rm−1. Computational experience (see Section 13) has shown

that even though m increases in h, the accuracy of the discrete approximation, for a wide

range of parameters, becomes excellent for h ≤ 10.

The key to converting MCR into MC is identifying, for any possible realized value of Rn

not an element of S1, the “closest” element to it. Thus the entire evolution of the process,

and in particular values of Rn for n ≥ h, can approximately contained within the states

{0, S∗G, S∗B, S1 ×G and S1 ×B}.
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A formal procedure for doing this is to define the finite set W ∗
0 = {0∪S1∪ ρ∗}, with 0 as

its 0th element (i.e., r0 = 0) and ρ∗ as its mth element (i.e., rm = ρ∗), and define the indices

J0(i) = the index of the closest element in W ∗
0 to Rn+1 given Rn = ri and xn+1 = 0

= arg min
k∈0,1,...,m

{|w0(ri + a)− rk|}

and

J1(i) = the index of the closest element in W ∗
0 to Rn+1 given Rn = ri and xn+1 = 1

= arg min
k∈0,1,...m

{|w1(ri + a)− rk|}.

The associated probability transition matrix P can be created (see Appendix B) from two

conditional probability transition submatrices PG and PB which correspond, respectively,

to state transitions conditioned on the machine being in G and B. Matrix P is shown

schematically in Figure 3.

The composition of these submatrices is:

[
PG

]
ij

=


1− α if j = J0(i), i ∈ {0, 1, 2, . . . ,m− 1},
α if j = J1(i), i ∈ {0, 1, 2, . . . ,m− 1},
0 other i ∈ {0, 1, . . . ,m− 1}, j ∈ {0, 1, . . . ,m},

(44)

[
PB

]
ij

=


β if j = J0(i), i ∈ {0, 1, . . . ,m− 1},
1− β if j = J1(i), i ∈ {0, 1, . . . ,m− 1},
0 other i ∈ {0, 1, . . . ,m− 1}, j ∈ {1, 2, . . . ,m}.

(45)

13. Numerical Results for Bernoulli Monitoring

To obtain numerical results for Bernoulli monitoring we first generated the set S1 using

the algorithm of the preceding section, and found that the number of states remains less

than a few hundred for h ≤ 12 when ρ∗ ≤ .4, α ≤ .4, and β ≤ .4, conditions typical for

realistic systems.

We next computed, using equations (41) and (42), the steady-state probability vector π.

For example, Figure 4 shows πi, i = 0, 1, ...,m, plotted against the values of ri generated by

the algorithm of Section 12 for α = β = 0.2, a = 0.01, h = 8 and ρ∗ = 0.2. Note the “jumpy”

nature of the steady-state probabilities and the gaps between the values of ri. This behavior

suggests that using an evenly spaced grid over the r axis to represent the possible ri values
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Figure 3: Schematic representation of the transition matrix P from state i to
state j showing the use of submatrices PG and PB. [PB]i6=0 denotes
the submatrix created by removing the row associated with i = 0 from
PB. Shaded regions represent zero transition probabilities.

would be inefficient due to the resulting inclusion of highly unlikely (or even impossible)

values of ri.

Increasing the horizon h from 8 to 12 (which increases the number of generated states, and

thus the computational effort) was shown to have little effect on the probabilities associated

with the ri values. Moreover computed values of the performance measures π0, πm and π2m

for a wide range of parameter settings, show a maximum absolute error of less than .01 for

h ≥ 7. For this reason, we used h = 7 for the remaining computational results.

The resulting performance measures are shown in Figures 5, 6 and 7; each shows a ROC

that plots pS = prob.{producing scrap} versus π0 = prob.{down for checking}, for selected

parameter values.

Figure 5 shows that for a fairly non-informative sensor (α = β = 0.3), varying ρ∗ from

.01 to .5 produces a wide range of operating points (i.e., possible values of pS and π0). Figure

6 shows the effect of increasing sensor sensitivity to α = β = 0.2. Figure 7 shows that with

an even more informative sensor (α = β = 0.1), only a few operating points are possible

for ρ∗ between 0.01 and 0.5. Indeed, for a = 0.1 there is only one feasible operating point
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Figure 4: Probabilities πi associated with values of ri generated by the solution
procedure when α = β = 0.2, a = 0.01, ρ∗ = 0.2, and a horizon of
h = 8 is used to generate the state space.

Figure 5: System Operating Characteristics with Bernoulli monitoring generated
by varying ρ∗ from 0.01 to 0.5. with α = β = 0.3. Points associated
with the same value of ρ∗ are indicated by arrows .
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Figure 6: System Operating Characteristics with α = β = .2. Increasing the
failure probability a tends to collapse ranges of smaller ρ∗ into one
operating point, for example ρ∗ ∈ (0.01, 0.3) produces a wide range of
operating points when a = 0.01, but produces only one operating point
when a = 0.1.

Figure 7: System Operating Characteristics of Figure 5 with α = β = .1. Note the
extreme collapse of operating points to just one for all ρ∗ ∈ (0.01, 0.5)
associated with a high failure probability (a = 0.1).

25



Figure 8: Decreasing β from 0.3 (as in Figure 5) to 0.2 (above) improves both
performance measures.

(pS = 0.00747, π0 = 0.146) in the range .01 ≤ ρ∗ ≤ 1. This insensitivity to the value of ρ∗ is

one indicator of the robustness of the PTR policy for machines that have high probability

of failure within an inter-observation interval.

Figure 8 shows a SOC for an “asymmetric” sensor with α = 0.3, and β decreased from 0.3

(as shown in Figure 5) to 0.2. By comparing to Figure 5, we see that decreasing β reduces

the detection time as well as the probability that the system is down: a lower β gives greater

confidence that observing x = 0 implies condition G. This reduces the upward drift of the

Rn process for any given set of “zero” observations, which delays the expected time until the

next false alarm.

Figure 9 compares different sensors when a = 0.1, showing the advantage of having a

more informative sensor.

Figure 10 shows an interesting alternative form of an SOC. The two attributes are pS

and prob.{Producing good product} = pG. The latter measure is important since checking

time is taken from production capacity even though less scrap is produced. This SOC shows

operating points (above the dotted line) that will never be optimal with respect to these

measures. For example when a = 0.01, there exists for each value of ρ∗ above 0.26 another

ρ∗ below 0.26 that produces the same throughput of good product with a lower scrap rate.
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Figure 9: Decreasing α and β from 0.3 to 0.1 improves the System Operating
Characteristic .

14. Elements of P for Normal monitoring.

For Normal monitoring the observations Xn are independent normally distributed ran-

dom variables depending only on machine condition. In particular,we assume the distribu-

tions of Xn in equation(16) are given by

p(x) =
1√
2π

e−x2/2

q(x) =
1√
2π

e−(x−µ)2/2.

The likelihood ratio is thus

L(x) = q(x)/p(x) = eµx−µ2/2

and equation (39) becomes

Rn = γeµXn [Rn−1 + a], (46)

where

γ ≡ e−µ2/2

1− a
. (47)

Since Xn is a continuous random variable, the results of Appendix A can be used directly.

Moreover, since both p(x) and q(x) are continuous functions of x, it can be shown that the
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Figure 10 Operating Characteristic Curve for scrap production versus good pro-
duction. “Better” is towards the point (1,0): no scrapping and always
producing good product (no down time). Note the existence of “dom-
inated” operating points: when a = 0.01, for example, for each ρ∗

above 0.26 there exists a ρ∗ below 0.26 with the same throughput of
good product and a lower scrap rate. Similar behavior occurs when
a = 0.05 and a = 0.1 at ρ∗ near 0.32 and 0.36, respectively.
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distribution functions FG(r) and FB(r), given by equations (A4) and (A5) respectively, are

also continuous on the open interval (0, ρ∗).

Defining the associated probability density functions to be:

fG(r) ≡ d

dr
FG(r)

fB(r) ≡ d

dr
FB(r)

and noting that the continuation region is

C(r, y) ≡ {x : x <
1

µ
ln

r

γ(y + a)
}

equations (A4) and (A5) – after differentiating both sides – become:

fG(r) = (1− a)
∫ ρ∗

0

fG(y)

µr
p

(
1

µ
ln

r

γ(a + y)

)
dy +

(1− a)π0

µr
p

(
1

µ
ln

r

aγ

)
0 < r < ρ∗ (48)

and

fB(r) =
∫ ρ∗

0

[fB(y) + afG(y)]

µr
q

(
1

µ
ln

r

γ(a + y)

)
dy +

aπ0

µr
q

(
1

µ
ln

r

aγ

)
0 < r < ρ∗, (49)

the alarm probabilities can be shown to satisfy:

π∗G = (1− a)
∫ ρ∗

0
fG(y)

∫ ∞

ρ∗

1

µr
p

(
1

µ
ln

r

γ(a + y)

)
dr dy + (1− a)π0

∫ ∞

ρ∗

1

µr
p

(
1

µ
ln

r

aγ

)
dr

(50)

π∗B =
∫ ρ∗

0
[fB(y)+afG(y)]

∫ ∞

ρ∗

1

µr
q

(
1

µ
ln

r

γ(a + y)

)
dr dy+aπ0

∫ ∞

ρ∗

1

µr
q

(
1

µ
ln

r

aγ

)
dr, (51)

and the normalizing equation equivalent to equation (42) becomes

1 = π0 +
∫ ρ∗

0
fG(r)dr +

∫ ρ∗

0
fB(r)dr + π∗G + π∗B. (52)

To solve equations (48) through (52), we define

g(r) ≡ fG(r)/π0 (53)

b(r) ≡ fB(r)/π0 (54)

so that equations (48) and (49) become:
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g(r) = (1− a)
∫ ρ∗

0

g(y)

µr
p

(
1

µ
ln

r

γ(a + y)

)
dy +

(1− a)

µr
p

(
1

µ
ln

r

aγ

)
0 < r < ρ∗ (55)

and

b(r) =
∫ ρ∗

0

[b(y) + ag(y)]

µr
q

(
1

µ
ln

r

γ(a + y)

)
dy +

a

µr
q

(
1

µ
ln

r

aγ

)
0 < r < ρ∗. (56)

Equations (55) and (56) are a system of Fredholm equations of the second kind. The key

to their solution is the nature of their kernels, that is the behavior of

kG(y, r) = 1
µrp

(
1
µ ln r

γ(a + y)

)

= 1
µr
√

2π
e
− 1

2µ2 ln2 r

γ(a + y)

and

kB(y, r) = 1
µr
√

2π
e
−1

2

(
1

µ
ln

r

γ(a + y)
− µ

)2

A detailed study of the behavior of these equations is given in Jorna and Pollock (1998).

The numerical results shown below were produced by approximating g(·) and b(·) by nth order

polynomials formed by truncating a Chebychev series. In particular,we find the polynomial

coefficients cG
i , i = 1, 2, . . . , n such that

g(r) ≈
n∑

i=1

cG
i cos

(
(i− 1) cos−1

(
2r

ρ∗
− 1

))

with the property ∫ ρ∗

r=0
g(r) dr ≈

n∑
i=1; i odd

cG
i ρ∗

1− (i− 1)2 . (57)

The function g(xi) can then be evaluated over the set of Chebyshev points xi, where

xi =
ρ∗

2

(
1 + cos

(
π(i− 1)

n− 1

))
i = 1, 2, . . . , n.
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Figure 11: The conditional density function g(r) = fG(r)/π0 for Normal moni-
toring, analogous to the plot of πi for Bernoulli monitoring shown in
Figure 4.

Equation (49) is solved, in a similar way, by approximating b(·) with a different Chebychev

series and using the g(·) obtained above. That is, the coefficients cB
i , i = 1, 2, . . . , n, are found

such that

b(r) ≈
n∑

i=1

cB
i cos

(
(i− 1) cos−1

(
2r

ρ∗
− 1

))
,

with the property ∫ ρ∗

r=0
b(r) dr ≈

n∑
i=1; i odd

cB
i ρ∗

1− (i− 1)2 . (58)

The performance measures π∗G and π∗B are obtained by trapezodial approximation of the

integrals in equations (50) and (51) using the values of g(xi) and b(xi) at the Chebyshev

points xi. Finally, π0 is obtained by using equations (57) and (58) in equation (52).

15. Numerical Results for Normal Monitoring

Figure 11 shows g(r) for Normal monitoring with a = .05, µ = .5 and ρ∗ = .2. Compared

to the πi obtained for Bernoulli monitoring (Figure 4) this distribution is smooth and well

behaved except near zero (where it can be shown that limr→0 FG(r) = 0.) However, the

behavior of g(r) and b(r) for other parameter values, particularly for large a and small µ,

can be extremely erratic (see Jorna and Pollock (1998)).

Figure 12 shows the System Operating Characteristic curves for pS = prob.{Producing

scrap} versus π0 = prob.{System Down} for a = 0.05 and 0.1 while fixing µ = 1.5. As in

Figure 5, there is an improvement in the SOC with smaller a.
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Figure 12: Operating Characteristic for Normal monitoring, µ = 1.5, for different
failure probabilities

Figure 13 shows SOC sensitivity to changing µ, the shift in the expected observation

value when the system fails. As µ increases the power of the sensor to discriminate between

conditions G and B increases and this improves the SOC curve. This has obvious implications

in evaluating sensors with different µ values.

Figure 14 shows an alternative set of SOC curves: a plot of Prob.{Producing scrap}
versus Prob.{Producing good product} for a = 0.05 and µ ∈ {0.5, 1.0, 1.5}. Note that

when the production utilization (i.e. the probability of producing good parts) is about .8,

trying to increase this (by decreasing the threshold ρ∗) produces an increase in scrap without

appreciable improvement in the production rate.

16. Conclusion

The System Operating Characteristic is an important and evocative tool for the compar-

ison of monitoring policies and for the comparison of alternative observation technologies.

The structure set forth in this paper provides a Markov chain based method for the computa-

tion of critical performance measures needed to express SOCs when sample observations are

Bernoulli random variables. For more general sampling functions p(x) and q(x), Appendix

A presents equations that can be solved to find key performance measures.
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Figure 13: System Operating Characteristic for Normal monitoring, a = .05, for
different mean shifts in monitored signal µ.

Figure 14: Alternative Operating Characteristic for Normal monitoring, a = .05,
for different mean shifts in monitored signal µ.
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APPENDIX A: Steady State Properties of MPR

In this Appendix, we show how the Chapman-Kolmogorov (C-K) equations can be

used to write expressions for steady-state probabilities and distributions for MPR defined

in section 10. Although the notation and details may appear formidable, the method is

a straightforward extension of the use of C-K equations for finding steady-state solutions

to a finite state Markov chain. In the development that follows, it might be helpful to

refer to the schematic flow diagram of Figure A1. In this diagram, the “states” {RG} and

{RB} refer to R-values from equation (39) in the open interval (0, ρ∗) while the machine is

in condition G and B, respectively. S∗G, S∗B, and 0 are the singleton “false alarm,” “true

alarm,” and “renewal” states as discussed in Section 10. The labels on the transition arrows

from singleton states represent governing probabilities; the arrows from the sets of states

{RG} and {RB}, represent the complementary distribution functions P and Q associated

with exceeding the threshold ρ∗, given machine condition G and B, respectively.

Figure A1: Schematic representation of transitions among the states in MPR. Note
that 0, S∗B and S∗G are singleton states, while {RG} and {RB} represent
a continuum of states in the open interval (0, ρ∗).

The distribution function FG,n(r) is computed by conditioning on the value of Rn−1 = y,
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and noting that Cn = G is only possible if Cn−1 = G. This gives

FG,n(r) =
∫ ρ∗

y=0+
prob.{0 < Rn ≤ r ∩ Cn = G|Rn−1 = y ∩ Cn−1 = G}dFG,n−1(y)

+π0,n−1prob.{0 < Rn ≤ r ∩ Cn = G|Rn−1 = 0 ∩ Cn−1 = G} (A1)

The first term in the integrand of (A1) can be written:

prob.{0 < Rn ≤ r|Cn = G ∩Rn−1 = y ∩ Cn−1 = G}prob.{Cn = G|Rn−1 = y ∩ Cn−1 = G}.

Using equation (39) (which governs the behavior of Rn when Rn−1 = y), and the fact

that prob.{Cn = G|Cn−1 = G} = 1− a (which is independent of the value of Rn−1), gives

prob.{0 < Rn ≤ r∩Cn = G|Rn−1 = y∩Cn−1 = G} = (1−a)prob.{0 < `(Xn)(y+a) ≤ r|Cn = G}.

Thus

FG,n(r) =
∫ ρ∗

y=0+
(1− a) prob{0 < `(Xn)(y + a) ≤ r|Cn = G}dFG,n−1(y)

+(1− a)π0,n−1 prob.{0 < `(Xn)a ≤ r|Cn = G}. (A2)

By defining the region C(r, y) ≡ {x : `(x) < r/(a + y)}, C(ρ∗, y) becomes the set of

“continuation” values of the observation xn. Since p(x), the p.d.f. for Xn given Cn = G, is

independent of n,

FG,n(r) = (1− a)
∫ ρ∗

y=0

∫
x∈C(r,y)

p(x) dx dFG,n−1(y) + (1− a)π0,n−1

∫
x∈C(r,0)

p(x) dx. (A3)

Taking the limit of both sides of equation (A3) as n → ∞ gives the steady state distri-

bution

FG(r) = (1− a)
∫ ρ∗

y=0

∫
x∈C(r,y)

p(x) dx dFG(y) + (1− a)π0

∫
x∈C(r,0)

p(x) dx. (A4)

Similarly, it can be shown that

FB(r) = a
∫ ρ∗

y=0

∫
x∈C(r,y)

q(x) dx dFG(y) + aπ0

∫
x∈C(r,0)

q(x) dx

+
∫ ρ∗

y=0

∫
x∈C(r,y)

q(x)dxdFB(y) (A5)
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π∗G =
∫ ρ∗

y=0

∫
x/∈C(ρ∗,y)

(1− a)p(x) dx dFG(y) + π0

∫
x/∈C(ρ∗,0)

(1− a)p(x) dx; (A6)

π∗B =
∫ ρ∗

y=0

∫
x/∈C(ρ∗,y)

aq(x) dx dFG(y) + π0

∫
x/∈C(ρ∗,0)

aq(x) dx

+
∫ ρ∗

y=0

∫
x/∈C(ρ∗,y)

q(x) dx dFB(y) (A7)

and, finally,

π0 = π∗G + π∗B

=
∫ ρ∗

y=0

∫
x/∈C(ρ∗,y)

[aq(x) + (1− a)p(x)] dx dFG(y)

+
∫ ρ∗

y=0

∫
x/∈C(ρ∗,y)

q(x) dx dFB(y) + π0

∫
x/∈C(ρ∗,0)

[aq(x) + (1− a)p(x)] dx. (A8)
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Figure B1: Schematic representation of the MC states, the MCR sets, and the
R-values generated from equation (39).

APPENDIX B: Correspondence between Formulations MC and MCR

The correspondence between elements of I2m+1 ∈ {0, 1, 2, . . . , 2m} of the chain MC and

of the elements MCR which lie in the set S1 × {G, B} are shown in Figure B1.

State 0 is the “starting” state of MC; since it represents the situation where Pn = 0 (and

thus Rn = 0) it is also the “renewal” state. State m is the false alarm state, since Rn = ρ∗

with machine condition G; state 2m is the true alarm state, since Rn = ρ∗ with machine

condition B. The set {RG} represent states where Rn lies between 0 and ρ∗ with machine

condition G; {RB} represents states where Rn lies between 0 and ρ∗ with machine condition

B.

Transition probabilities for MC, i.e. among the states in I2m+1, are obtained by noting
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that:

a) when Rn+1 ≥ ρ∗, the state entered after transition n + 1 is either m or 2m, depending

whether machine condition is either G or B;

b) once in state m or 2m, since b = g = 1, the next transition is into state 0 with

probability 1;

c) for any value of Rn < ρ∗, if the machine condition is G then with probability a condition

B will hold on the next transition;

d) all transitions from condition B to condition G must be made via the true alarm state

2m.

Thus, transitions from alarm states to the renewal state are

pm,0 = 1,

p2m,0 = 1,

pm,j = 0 if j 6= 0,

p2m,j = 0 if j 6= 0,

and pij = 0 for i = m + 1, m + 2, . . . , 2m− 1; j = 0, 1, 2, . . . ,m.

For the rest of the elements of P , we define the m ×m sub-matrices PG and PB, such

that[
PG

]
ij

= prob.{σn = j|σn−1 = i ∩ Cn = Cn−1 = G} for i = 0, 1, . . . ,m− 1; j = 0, 1, . . . ,m,[
PB

]
ij

= prob.{σn = j + m|σn−1 = i ∩ Cn = Cn−1 = B} for i = 0, 1, . . . ,m− 1; j = 1, 2, . . . ,m,

where σn is the state at the end of the nth transition.

The elements of these submatrices are given by the nature of the distributions p(·) and

q(·) of equation (16). In terms of these submatrices, the remaining elements of P are given

by:

pij = (1− a)[PG]ij for i = 0, 1, . . . ,m− 1; j = 0, 1, . . . ,m

pij = a[PB]i,j−m for i = 0, 1, . . . ,m− 1; j = m + 1, . . . , 2m,

pij = [PB]i−m,j−m for i = m + 1, m + 2, . . . , 2m− 1; j = m + 1, m + 2, . . . , 2m.

The first equation reflects transitions from Cn−1 = G to Cn = G; the second represents

transitions from Cn−1 = G to Cn = B; the third equation reflects transitions while the

machine condition is B. Matrix P is shown schematically in Figure 3.
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APPENDIX C: Performance Measures for Arbitrary b and g

In our development, we assumed checking times of b = g = 1. Calculating performance

measures for arbitrary b and g for condition B or G, respectively, is described here.

Recalling that L is the expected cycle time, we can re-express equation (3) as:

L(b, g) = E(T ) + µg + δ + b

which explicitly incorporates as arguments of L the checking times b and g, as well as µ, the

expected number of false alarms in a cycle.

By definition, let pf (b, g) be the fraction of time the machine is in the false alarm state.

For arbitrary b and g, the cycle time has three components:

a) L(1, 1);

b) b− 1, the amount of checking time while in B not accounted for in L(1, 1);

c) pf (1, 1)L(1, 1)(g − 1), the time consumed in checking false alarms not accounted for

in L(1, 1), making use of the fact that, when b = g = 1, the expected number of false

alarms per cycle is µ = pf (1, 1)L(1, 1) .

Hence, the expected cycle time for arbitrary b and g can be written

L(b, g) = L(1, 1) + (b− 1) + pf (1, 1)L(1, 1)(g − 1).

Using this result, the fraction of time spent in the false alarm state is

pf (b, g) =
pf (1, 1)L(1, 1)g

L(b, g)
,

and the fraction of time spent in the true alarm state is

pt(b, g) =
b

L(b, g)
.
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