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Abstract

Every fall, thousands of high school swimming coaches across the country begin the

arduous process of preparing their athletes for competition. With a grueling practice

schedule and a dedicated group of athletes, a coach can hone the squad into a cohesive

unit, poised for any competition. However, oftentimes all preparation is in vain, as

coaches assign swimmers to events with a lineup that is far from optimal. This paper

provides a model that may help a high school (or other level) swim team coach make

these assignments. Following state and national guidelines for swim meets, we describe

a binary integer model that allows an examination of the times for swimmers on the

squad, compares these to those of the expected opponent, and determines an overall

assignment that maximizes the total number of points scored by the squad.

Every fall, thousands of high school swimming coaches across the country begin the

arduous process of preparing their athletes for competition. With a grueling practice schedule

and a dedicated group of athletes, a coach can hone the squad into a cohesive unit, poised for

any competition. However, oftentimes all preparation is in vain, as coaches assign swimmers

to events with a lineup that is far from optimal. Prior to each meet, a coach must decide

1



   

which athletes will compete in which events. In a sport where every point counts, these

decisions are extremely important. Making one poor assignment may cost the team a victory.

Coach Denny Hill, winner of twenty state championships at Ann Arbor (Michigan) Pioneer

High School and former national swim coach of the year, says, “a lot of times we wonder

why a coach used the swimmers that they did.”

Each meet consists of multiple events in various disciplines, such as freestyle and back-

stroke, with points awarded in each event based on placement. Swimmers can compete in

individual or relay events. However, each swimmer is restricted in the number of events

he/she can race, due to both meet rules and physical limitations.

Determining which athletes to assign to which events is a difficult task, often taking

years to master. Analyzing the individual performances of a squad of sixty swimmers in

order to determine which two or three should compete in one event while keeping in mind

the ten other events to be assigned can be next to impossible. Coach Hill believes that the

main cause of poor assignments is that many young coaches have neither the time nor the

experience to create a competitive lineup.

This paper provides a model that may help a high school (or other level) swim team coach

to assign swimmers to events at a meet. Although there may be many different objectives

(maximizing the number of points won, maximizing the probability that the team wins,

providing an opportunity for swimmers to qualify for later meets, etc.), this model only

addresses the goal of maximizing the number of points won by a team.

1 Guidelines

Because determining the optimal placement of swimmers in events is a constrained assign-

ment problem, a binary integer program is used for the model formulation. The size of a

squad (the group of athletes eligible to compete) may vary widely among teams. We as-

sume (without loss of generality) that the squad has enough swimmers to fill all the events.

Although in practice swimmers may be assigned to an event just prior to that event, the

roster (the assignment of swimmers to events) is generally fixed at the beginning of the meet.
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Therefore, we assume that the allocation of swimmers is completed prior to the first event

and no changes are made during the meet. Although swim teams can compete in a variety

of meets, we focus on a dual meet, in which two teams compete.

The assignment of swimmers is limited by constraints currently in effect in many high

school competitions:

• each team can enter at most three swimmers in any one individual (non relay) event.

Thus each individual event usually has six swimmers (three from each team), unless a

team fails to (or chooses not to) enter three;

• each team can provide at most three “entries” in each relay event, where an entry is a

group of four swimmers;

• each swimmer can enter at most four events;

• each swimmer can enter at most two individual events;

• in a relay event, a team cannot be awarded points for more than two finishing places.

Coaches make decisions about which events their swimmers should enter using informa-

tion such as their event times, their capabilities of performing a particular sequence of events,

their performance in competition compared to training, etc. The coaches also have some lim-

ited information about the opposing team’s swimmers. We assume that all assignments are

made based on an estimated time for each swimmer on “our” squad (hereafter referred to

as the “squad”) for each event. These estimates can be made using information from earlier

meets, training sessions or previous seasons. They may also be adjusted depending on how

a coach believes a swimmer will compete under certain conditions, such as swimming two

consecutive events.

Opponent times are also estimated using previously observed times from past meets,

which are generally available to a coach. An opponent’s roster is then estimated using these

times, and is assumed to be set prior to determining the squad assignments.
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2 Model Formulation

Our model compares the times for swimmers on the squad to those of the opponent, and

determines an overall assignment that maximizes the total number of points.

Definitions

• A = {1, 2, ..., E} is the set of all events. Typically E = 11 in a high school dual meet

(diving is generally a 12th event, but is not included in this model).

• I is the set of individual events

• R is the set of relay events, where I ∩R = ∅ and I ∪R = A.

• tij is the estimated time for swimmer i in event j, j ∈ A.

• a(1)j, a(2)j and a(3)j are the best, second best and third best times, respectively, for

the opponent’s swimmers in event j. Because of increased accuracy in timing, it is

reasonable to assume that there are no ties in a race, so that no two times are equal

and a(1)j < a(2)j < a(3)j for all j. For convenience in notation, we also define (fr all

j) a(s)j = 0 if s ≤ 0 and a(s)j = M (an arbitrarily large number ) if s ≥ 4.

• xij, yij, and zij are assignment variables that indicate whether swimmer i on the squad

competes in event j and, if so, has the best, the second best, or the third best time on

the squad, respectively; so that

xij ≡
{

1 if i is assigned to event j and has the best time on the squad in event i

0 otherwise

yij ≡
{

1 if i is assigned to event j and has the 2nd best time on the squad in event i

0 otherwise

zij ≡
{

1 if i is assigned to event j and has the 3rd best time on the squad in event i

0 otherwise

• r(1)j, r(2)j, and r(3)j are the “realized” times for the best, second best and third best

swimmers on the squad in event j. Since four swimmers are assigned to each relay

event, their “realized” time for the event is the sum of their individual times.
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Natural Constraints and Relations Among the Variables

Since each event must have three entries from a squad,

∑
i

xij = 1 j ∈ I
∑
i

xij = 4 j ∈ R (1)

∑
i

yij = 1 j ∈ I
∑
i

yij = 4 j ∈ R (2)

∑
i

zij = 1 j ∈ I
∑
i

zij = 4 j ∈ R (3)

Each swimmer can enter at most four events, with at most two of those being individual

events. Therefore, the following constraints apply

∑
j∈I

xij + yij + zij ≤ 2 for all i (4)

∑
j∈A

xij + yij + zij ≤ 4 for all i (5)

Finally, a swimmer can only place once in an event, leading to

xij + yij + zij ≤ 1 for all i, j (6)

The realized time for a swimmer in an event is a function of his or her estmated time

and whether he or she swims in the event. This is expresssed by the relations

r(1)j =
∑
i

tijxij j ∈ A (7)

r(2)j =
∑
i

tijyij j ∈ A (8)

r(3)j =
∑
i

tijzij j ∈ A (9)

In order to force consistency in the order in which swimmers place we use the constraints

r(1)j + ε ≤ r(2)j j ∈ A (10)

r(2)j + ε ≤ r(3)j j ∈ A (11)

(where ε is a very small number).

The “realized” times in each event are compared to the opponent times to determine the

outcome of the various events. For example, if

r(1)j < r(2)j < a(1)j < a(2)j < a(3)j < r(3)j, (12)

5



  

then the squad would be rewarded points for first, second and sixth place in event j.

The goal of the squad is to maximize the total points won during the meet. To address

this objective, we define the indicator variables wjlmn that specify the outcome of event j,

where

wjlmn =




1 if, in event j, the best swimmer receives place l, the second best

swimmer receives place m, and the third best swimmer receives place n

0 otherwise

In an event with six swimmers, l ∈ {1, 2, 3, 4}, m ∈ {2, 3, 4, 5}, and n ∈ {3, 4, 5, 6}. Note

that wjlmn is defined only when l < m < n, i.e., the second best swimmer can not place

better than the best swimmer, etc.

This outcome indicator can be used to construct constraints on the realized times r(i)j.

For the example given in (12) above, in which the squad places first, second and sixth in

event j, then wj126 = 1, and the condition r(2)j < a(1)j (the squad’s second best swimmer

is faster than the opponents best swimmer) must hold. This can be enforced by using the

constraint

r(2)j + ε ≤ a(1)jwj126 + (1 − wj126)M, (13)

where M is a very large number. Thus, if wj126 = 1, then r(2)j < a(1)j as desired. However,

if the outcome does not occur, so that wj126 = 0, then r(2)j is essentially unconstrained

(it is bounded above by a very large number.) Similarly, for the example in (12) to hold

a(3)j < r(3)j must be true for the squad’s third best swimmer to place sixth. The constraint

r(3)j ≥ a(3)jwj126 + ε (14)

ensures this, since r(3)j is either bounded from below by zero or by a(3)j, depending on the

outcome.

For each event j every feasible combination of l,m and n has a pair of constraints similar

to those in (13) and (14) for each of the three swimmers in the event.

Finally, the constraint

∑
1≤l<m<n≤6

wjlmn = 1 j ∈ A (15)
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guarantees that each event will have exactly one outcome.

Objective Function

The reward for each outcome is determined by adding the points for each place for each

type of event. The point structure used for this model is that used in Michigan High School

competition, as shown in Table 1.

Place 1 2 3 4 5 6

Points (Individual Event) 6 4 3 2 1 0

Points (Relay Event) 8 4 2 0 0 0

Table 1. Points for individual and relay events

Let gjlmn be the reward for receiving the lth, mth and nth places in event j. For example,

gj126 = 10 if j is an individual event and gj126 = 12 for a relay event. This variable incor-

porates the fact that a team cannot be awarded points for more than two finishing places in

a relay event. For example, gj123 = 12 for a relay event, since the points for the third place

finish are not included.

The total reward for the entire meet is

T =
∑

j,l,m,n

gjlmnwjlmn. (16)

The problem then is to maximize T with respect to the variables xij, yij, zij.

Integer Programming Formulation

The integer program formulation of the rostering problem can be now stated as:

max
xij ,yij ,zij

∑
j,l,m,n

gjlmnwjlmn (17)

subject to

∑
i

tijxij = r(1)j j ∈ A

∑
i

tijyij = r(2)j j ∈ A
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∑
i

tijzij = r(3)j j ∈ A

r(1)j + ε ≤ r(2)j j ∈ A

r(2)j + ε ≤ r(3)j j ∈ A∑
1≤l<m<n≤6

wjlmn = 1 j ∈ A

∑
i

xij = 1 j ∈ I

∑
i

xij = 4 j ∈ R

∑
i

yij = 1 j ∈ I

∑
i

yij = 4 j ∈ R

∑
i

zij = 1 j ∈ I

∑
i

zij = 4 j ∈ R

∑
j∈I

xij + yij + zij ≤ 2 for all i

∑
j∈A

xij + yij + zij ≤ 4 for all i

xij + yij + zij ≤ 1 for all i, j

ε + rj(1) ≤ a(l)jwjlmn + M(1 − wjlmn)

ε + a(l − 1)jwjlmn ≤ r(1)j

ε + rj(2) ≤ a(m− 1)jwjlmn + M(1 − wjlmn)

ε + a(m− 2)jwjlmn ≤ r(2)j

ε + rj(3) ≤ a(n− 2)jwjlmn + M(1 − wjlmn)

ε + a(n− 3)jwjlmn ≤ r(3)j.

xij, yij, zij ∈ {0, 1} for all i, j

wjlmn ∈ {0, 1} for all j ∈ A and 1 ≤ l < m < n ≤ 6
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3 Results and Analysis

The integer program (17) was solved using the CPLEX solver (v. 7.500). The model was

initially tested with 24 swimmers on our squad and eight events (three relay events and

five individual events). The times for the squad and opponents were selected from typical

swimmers in the Northwest Conference (collegiate). The assignments, places and points for

the eight events are shown in Table 2. The squad gained 78 out of 122 possible points.

Event Assignment Places Points

1 2 3

1 {3,10,14,21} {9,15,19,20} {2,22,23,24} 1,2,4 12

2 {1,2,7,24} {4,10,17,19} {3,5,9,21} 1,5,6 8

3 {1,14,19,22} {8,16,20,21} {5,6,10,11} 1,2,6 12

4 3 16 10 2,3,4 9

5 4 2 11 1,3,5 10

6 2 3 1 2,3,4 9

7 6 15 5 1,4,5 9

8 6 14 1 2,3,4 9

Table 2. Results for example with 24 swimmers in eight events

In order to analyze the model’s sensitivity to values of the times, we calculated how the

squad would perform against an opponent that is faster than expected. Keeping the original

squad assignments as shown in Table 2, each opponent’s time was lowered by a fixed percent

and the points that the squad would receive against the “new” opponent were calculated.

If the opponent times are 1% lower, the original roster will only score 63 points, narrowly

avoiding a loss (62 points is required for a win in this example). If the opponent times were

lowered by 2%, the original roster scores 57 points, thereby losing the meet.

[MACIEK - HERE’S WHERE WE COULD USE AN EXAMPLE OF WHAT HAPPENS
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IF WE RE-ROSTER THE SQUAD USING THE 2% LOWER OPPONENT TIMES]

Similarly, we analyzed how the squad would perform if its swimmers were less competitive

than predicted. The opponent times were held constant while the squad times were increased.

An increase of 1% resulted in a score of 70 points, less than the 78 points that the original

roster scored. However, even a 1 or 2% difference from estimated times might not be that

common. Competitive swimmers are consistent enough so that even the most inexperienced

coaches can predict how well their team will perform within a margin of error below 1%.

The example above is not realistic in terms of the size of a squad and the number of events.

A more representative data set was obtained from the Ann Arbor Pioneer High School swim

team, consisting of times for 62 swimmers in 11 events (three relay and eight individual).

These times were tested against a real opponent (one that the team had previously competed

with.)

[MACIEK: WE NEED A MORE “COMPETITIVE” EXAMPLE HERE; IF NECES-

SARY MAKE ONE UP??]

Using aggressive cutting in CPLEX, this problem was solved in 25 minutes (16 minutes

of branch and bound time), a fraction of the time that it required this experienced coach to

create his lineup by hand.

4 Conclusions

Our model finds an optimal assignment for swimmers to events. It can be useful as a

decision aid for younger coaches overwhelmed by the prospect of creating a full lineup, or

as a timesaver for older coaches who would like to spend more time coaching rather than

mulling over various possible swimmer lineups. Determining the top swimmer in an event is

generally trivial; it is the second and third positions that are most difficult to fill, particularly

in relay events. While placing first in an event may be a psychological boost for the team, A

meet is often won by the lower tier swimmers. As Pete Higgins, national swim coach of the

year at Westminster Academy in Atlanta, GA attests, “we can get first place in an event,

but we’re not going to be winning anything if our other guys get fifth and sixth.” The model
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can take a lot of the guesswork out of deciding which swimmers to place in the crucial lower

positions.

Some future work that can be accomplished using this model includes the addition of

certain constraints that may be helpful in creating a lineup. For example, if a swimmer

is to compete in two consecutive events, his/her performance in the second event may be

degraded. This may be accounted for by increasing the predicted time for the second event

by some percentage. As some coaches prefer, the option of allowing a swimmer to compete

in consecutive events may be completely prohibited. Also, some states allow for four entries

per team in an event. These results would require an obvious but straightforward expansion

of the model. Finally, our model provides a tool for the future analysis of strategies that

may be used as a rule of thumb when creating lineups, such as what to do with a swimmer

who is the best on the team in the majority of events.

[MENTION APPLICABILITY TO TRACK EVENTS ALSO???]
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